Quantum quenches in disordered systems: Approach to thermal equilibrium without a typical relaxation time
نویسندگان
چکیده
منابع مشابه
Quantum quenches in disordered systems: approach to thermal equilibrium without a typical relaxation time.
We study spectral properties and the dynamics after a quench of one-dimensional spinless fermions with short-range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping term promotes localization effects at finite temperature, which prevents thermalization even if the classical motion is chaotic. For slower decays, we find that thermalization does occ...
متن کاملOn the Approach to Thermal Equilibrium of Macroscopic Quantum Systems
In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zangh̀ı [2, 3, 4], we considered an isolated, macroscopic quantum system. Let H be a micro-canonical “energy shell,” i.e., a subspace of the system’s Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + δE. The thermal equilibrium macrostate at energy E corresponds to a subspace Heq of H such th...
متن کاملApproach to thermal equilibrium of macroscopic quantum systems.
We consider an isolated macroscopic quantum system. Let H be a microcanonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+deltaE . The thermal equilibrium macrostate at energy E corresponds to a subspace H(eq) of H such that dim H(eq)/dim H is close to 1. We say that a system with state vector psi...
متن کاملNon-equilibrium quantum dynamics after local quenches
We study the quantum dynamics resulting from preparing a onedimensional quantum system in the ground state of initially two decoupled parts which are then joined together (local quench). Specifically we focus on the transverse-field Ising chain and compute the time dependence of the magnetization profile, ml(t), and correlation functions at the critical point, in the ferromagnetically ordered p...
متن کاملReal-time evolution for weak interaction quenches in quantum systems
Motivated by recent experiments in ultracold atomic gases that explore the nonequilibrium dynamics of interacting quantum many-body systems, we investigate the nonequilibrium properties of a Fermi liquid. We apply an interaction quench within the Fermi liquid phase of the Hubbard model by switching on a weak interaction suddenly; then we follow the real-time dynamics of the momentum distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.85.050102